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NATURAL FREQUENCIES IN BENDING OF TWISTED
ROTATING AND NONROTATING BLADES

By G. Isakson and J. G. Eisley
SUMMARY

The effect of twist on the natural frequencies of uniform and
tapered nonrotating blades and the effect of twist and blade angle on
the natural frequencies of rotating uniform blades are shown by means
of charts. Both cantilever and articulated blades are considered. Off-
set of the root support from the axis of rotation is also considered.

The Rayleigh-Southwell procedure fqQr determining the effect of
rotation on natural frequencies of beam vibration is evaluated with
respect to twisted rotating blades and found to provide a useful approxi-
mation only in certain cases.

A relation developed by Lo and Renbarger for the effect of blade
angle on the natural frequencies of a rotating blade is found to provide
a useful approximation, under some circumstances, in the case of the
fundamental frequency of a twisted cantilever blade.

INTRODUCTION

The seriousness of the rotor-vibration problem in rotating-wing air-
craft usually necessitates a fairly sasccurate knowledge of natural fre-
quencies of blade vibration at the design stage. It is, consequently,
desirable that efficient means be available for the estimation of these
frequencies.

While several analytical methods have been developed in this area,
they all involve lengthy computation procedures and can be applied effi-
ciently only by the use of automatic digital computing machinery. They
are thus not well suited for use at a preliminary stage of design.

A simplified procedure has been developed for the rapid estimation
of flapwise bending frequencies of rotating blades for the case of zero-
built-in twist and blade angle (ref. 1). The application of this




procedure, however, is not restricted to untwisted blades but may be

extended to blades with moderate amounts of twist, such as have been -
common in most helicopters in the past. It has been found that the

effect of twist in these cases-is not significant.

The current and projected development of high-performance rotary-
wing aircraft, including convertible aircraft, is bringing with it a
trend toward substantially increased amounts of built-in twist of the
rotor blades, to the extent that the effect of twist is no longer neg-
ligible, Under these circumstances, it is deslrable that simplified
procedures of more general applicability, including the effect of twist,
be available for the estimation of blade frequencies. The present
investigation was undertaken to satisfy this need.
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While a generalized treatment of the twisted-blade vibration problem
for combined torsional and bending motion is available (ref. 2), it was
decided to limit the present consideration to bending alone to avoid
introducing at one time an excessively large number of additional
parameters.

The objectives of the program were: (1) To develop simple approxi-
mate procedures for the rapid estimation of natural frequencies of blade
vibration, and (2) to determine the effect of parametric variations on A
these frequencies and thus provide background information of value in
design. Because of the complex nature of the problem, particularly the
coupling effects introduced by twist, the first objective has been only
partially achieved; however, much information has been obtained in pur-
suit of the second objective.

The principal simplification investigeted was that involved in the
use of the Rayleigh method to predict the natural frequencies of a
rotating beam from a knowledge of the corresponding natural frequencies
and mode shapes of the nonrotating beam. This method has been found to
provide a good approximation in the case of untwisted beams (ref. l),
and in the present work, its application to twisted beams is evaluated.

Another simplification evaluated involves the application to
twisted blades of a relation developed by Lo and Renbarger for the
effect of blade angle on the frequencies of rotating untwisted blades.

To provide a basis for these evaluations and to provide information
on the effect of parametric variations, it was necessary to perform
extensive computations using a more accurate method. A number of such
methods are available (refs. 3 to 8). It was decided, after considerable
investigation, that the method best suited to the needs of the program 2
and to the available computing machinery was one developed by Targoff
(ref. 8) representing an adaptation of the familiar Holzer-Myklestad
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(ref. 9) method to include the effects of twist and rotation. An out-
line of this method, as modified in the present work, is presented in
the appendix.

The coordinates of the blade are shown in figure 1. The x-axis is
coincident with the undeformed elastic axis, which is assumed to be
straight and to lie in a plane normal to the axis of rotation, which is
in turn assumed to be coincident with the axis of centroids of blade
cross sections. The z-axis lies along the axis of rotation, and the
y-axis is normal to the xz plane and positive toward the leading edge
of the blade. The nomenclature and sign convention for displacements,
shears, and bending moments are illustrated in figure 2. Moment vectors
conform to the conventional right-hand rule.

In addition to the blade properties and parameters pertinent to the
problem of free vibrations of rotating untwisted blades at zero blade
angle, namely, spanwise distribution of mass and of stiffness about the
major principal axis of the cross section, type of root support, and
rotational velocity, the following properties and parameters enter the
problem when the blade is twisted: Spanwise distribution of stiffness
about the minor principal axis of the cross section, blade twist, and
blade angular setting with respect to the plane of rotation.

The data may be suitably generalized by expressing all properties
and parameters in nondimensional form. Vibration frequencies and rota-
tional velocity are nondimensionalized in the present work when multi-

plied by the quantity DoRu/EIlO~ Two types of mass and stiffness dis-

tribution are considered, one in which the mass and stiffnesses ( both
EI, and EIE) are uniform, and the other in which the mass and stiff-

nesses taper linearly to zero at the tip. The relative stiffness of
the blade about the major and minor principal axes of the cross section
is taken into account by means of the parameter . Two types of root
support are considered, namely, cantilever and fully articulated, and
this support is considered to be located at the axis of rotation and,
additionally, offset 5 percent of the rotor radius from the axis of
rotation.

The present investigation was conducted at the University of
Michigan under the sponsorship and with the financial assistance of
the National Advisory Committee for Aeronautics.




SYMBOLS

EI;,EI, bending stiffness about major and minor principal axis of
cross section, respectively

EI, = EIl/EIlO’ El, = EIE/EI2O

e offset of root support from axis of rotation

e = e/R

K kinetic energy

K, Southwell coefficient for nth natural frequency (see eq. (5))
1 length of blade segment

1=1/R

M ,Mp bending moment about major and minor principal axes of cross

section, respectively, when centrifugal tension is assumed
to act along undeformed position of elastic axis

m mass of blade segment

P potential energy
p; = \T/EIy, P, = T/EI,

R rotor radius

s coordinate in negative direction of x-axis measured from
outer end of beam segment

R
T centrifugal tension, ‘/\ szx dax
x
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Vl,V2 shearing force in direction of minor and major principal axes
of cross section, respectively

X coordinate in direction of x-axis measured from axis of
rotation

X=X/R

B angle between major principal axis of cross section and plane

of rotation

FAYS) increment in pB between blade segments

2
= EI, [EI
7 lo/ 20

6y,82 displacement of elastic axis in y- and z-directions,
respectively
81,00 displacement of elastic axis in direction of minor and major

principal axes of cross section, respectively

] total twist in blade between x =0 and x =R, 6 = -Rp'
, 4

AN=w pOR /EIlo
r

W= Ono RTIET.
{7o / )

P mass per unit length of blade

p = D/Do

¢y ,¢Z displacements in y- and z-directions describing shape of nth

n-omn ‘natural mode of nonrotating blade

w natural frequency of blade vibration

Q rotational velocity

[] rectangular matrix

{ } column matrix




Subscripts:

N nonrotating

n order of natural mode
o value at x =0

R rotating

T value at x = R

( )',( )" differentiation with respect to x
RAYIEIGH-SOUTHWELL APPROXIMATION

In a free vibration of an elastic beam at one of its natural fre-
quencies, the kinetic energy of the beam at zero displacement is equal
to its potential energy at maximum displacement. When the beam is
rotating, the potential energy includes a part associated with the
centrifugal-force field in addition to the strain energy.

Considering displacements both normal to and in the plane of rota-
tion, kinetic energy K may be written

R
Ll 2 2 2
K=3ap_ j; p(By,2 + 85,7)x (1)

where n refers to the mode under consideration.

Similarly, the potential energy P may be written

R
P = % \/ﬁ [%Il(ﬁyn"sin B - 8, "cos 5)2
0

n "_ . 2
+ EI2(5yn cos B + an sin B):ldx

4

QEJ;R Tl[(BYn')e * (Szn')g:l - pgyn2 dx (2)

vwhere the first term is the strain energy and the second term is asso-
ciated with the centrifugal-force field.

-
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Equating equations (1) and (2) and solving for anQ yield

R
f [EIl(Syn"sin B - By "cos 3)2 + EIp(dy, "cos B + 8 "sin B) 2](1}(
2 0
®Ry, T R
’ f o(s 245 z)dx
In Zn
0
R
1\ 2 1\2 2
f {Tl[(syn) + (0g, )] - POy, }dx
g2 Yo
R
2
v/;) p(ayn * ang)dx

Equation (3) is correct only when Byn and an represent the

(3)

true mode shape for the rotating beam which is, in general, not known
initially. It will, however, provide an approximate value of the fre-
quency if a mode shape is used which resembles the true mode shape. If,
as in the case of the untwisted beam, the rotation of the beam does not
greatly change the natural mode shapes, it can be expected that equa-
tion (3) will yield a satisfactory approximate value for R, when the

corresponding mode shape ¢Yn’¢zn for the nonrotating beam is used.

When that is done, the first term on the right-hand side becomes the

corresponding natural frequency of the nonrotating beam, and the equa-
tion may be written

~
=
~—r

2 2
an = U)Nne + Knfl

where
f ) {m [(9,7)2 + (¢zn')2] - p¢yn2}dx
Ky = —O = (5)
p(¢yn2 * ¢Zn2)dx

J;

and is seen to depend only on the mass distribution of the beam and the
shape of the nth natural mode when Q = 0. It is referred to as the
Southwell coefficient.

PROGRAM OF INVESTIGATION

A program of computations was performed for selected values of the
significant parameters, using the method of the appendix with the blade



divided into ten equal segments. The error in frequency introduced by
this approximate representation when the blade is nonrotating was found
to be positive and was estimated to be about 1.5 percent in the case of
the highest modes considered and to decrease accordingly for the lower
modes, There is evidence, as discussed in the following section, of
further error introduced in the rotational case, which is negative and
which consequently tends to reduce the ratio of the higher frequencies
to their nonrotational values. These errors, while not insignificant

in themselves, should not be substantially influenced by twist and, con-
sequently, would not be expected to mask the effect of twist on the nat-
ural frequencies,

As discussed in the Introduction, two types of mass and stiffness
distribution were considered, namely, uniform distribution and linear

taper to zero at the tip. In general, three values of 72 (o, 0.01,
and 0.l1) were considered with a few calculations performed for

72 = 0.0254. The blades were assumed to be twisted linearly with the
total angle of twist 0, measured from the axis of rotation to the blade
tip, being given values of 09, 159, and 30°. Positive values of ©
refer to a blade-tip angle smaller than the corresponding blade-root
angle. For each of these values of twist angle three different blade
angular settings were considered, involving f values at the tip of 0°,
159, and 30°., Two different types of root support, namely, cantilever
and fully articulated, were considered, the location of this support
being either at the axis of rotation (8 = 0) or offset from it by an
amount equal to 5 percent of the rotor radius (8 = 0.05).

The rotational velocity parameter p was varied from O to 15, with
the bulk of the computations performed at values of 0, 10, and 15. This
range is believed to include most practical cases. Mode shapes were
determined in the cases of zero rotation and this information was used
in testing the Rayleigh-Southwell approximation for the effect of rota-
tional velocity.

Another approximation considered was the Lo and Renbarger relation
for the effect of blade angle on the natural frequencies of an untwisted
rotating blade with 7 = 0 (ref. 10)

QRBE = URB=O2 - Qesingﬁ (6)

This relation, which is exact for linearized vibration theory for
untwisted blades, was tested for applicability as an approximation in
the determination of the fundamental frequency of a twisted, rotating,
cantilever blade, using the blade angle at the root.

Ul W+ E
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DISCUSSION OF RESULTS

Nonrotating Twisted Blade

The influence of twist and of the parameter ¥ on the natural fre-
quencies of a nonrotating blade is shown in figures 3 to 6, inclusive.
The fundamental frequency is almost completely unaffected by these two
parameters in every case considered. In figures 3 and 4 the fundamental
frequency is given by the solid-line curve nearest the origin and is the
same for all values of 7 considered. The effect of 7y can also be
expected to remain slight as long as ¥ 1is not close to 1. In figures 5
and 6 the fundamental frequency curve coincides with the horizontal
coordinate axis. There is actually a very slight increase in frequency
with increase in twist but it is not discernible on the graphs.

Figures 3 and 4 illustrate the effect of 7 on the higher fre-
quencies considered. On these plots the bending stiffness EI; remains

constant as 7y 1is varied; that is, only the stiffness EI, 1is varied.

This occurs directly as a result of nondimensionalization of ® in
terms of EIlO‘

For 72 = 0, that is, for the blade infinitely stiff about the minor
principal axis, it is seen that the higher modes reduce in frequency as
the twist is increased. As 9y 1s increased, an additional spectrum of
frequencies moves to the left which, for zero twist, corresponds to modes
in bending about the minor principal axis of the cross section (chordwise
bending). It is seen that, whenever one of these frequencies is close
in value to a frequency in the original set for bending about the major
principal axis (flapwise bending), twist has a strong coupling effect
and tends to drive the two frequencies apart. Calculations were performed

for 72 = 0.0254 to illustrate what happens when the fundamental chord-
wise bending frequency for the untwisted case coincides with the second
frequency in flapwise bending.

Figures 5 and 6 show the same frequency variations on a percentage
Lasis, 1T snould be noted that some of the frequency ratios correspond
to modes which, for zero twist, involve displacement in the direction
of the major principal axis of the cross section. It is seen that, for
the most part, the effect of twist is substantially reduced with the
introduction of taper in mass and stiffness distribution.

Mode shapes are presented in figure 7 for nonrotating, uniform,
twisted blades for several frequencies. Figure 7(0) is for a cantilever

blade with 30° twist and 72 = 0.0254 which was chosen because it repre-
sents a blade for which the first chordwise frequency and second flapwise
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frequency of the corresponding untwisted blade coinclide. Mode shapes

for both rotating and nonrotating untwisted blades with 72 = 0 are
given in reference 1.

Rotating Twisted Blade

Figure 8 demonstrates the combined effect of twist and rotational
velocity on the absolute values of the natural frequencies for different
values of 7 for the case of the cantilever beam. When 7y = O, the
frequencies are all well separated and the trends introduced by twist
at zero rotational velocity are maintained as rotational velocity is
increased, except that the effect of twist on the frequency of the funda-
mental mode becomes quite pronounced at the higher values of up 1if the
tip-blade angle is maintained constant.

This situation is altered considerably as 7y 1is increased because
of important coupling effects introduced by twist. It is seen that for
zero twist and zero blade angle the effect of rotation on the frequencies
for flapwise bending is much greater than that on the frequencies for
chordwise bending. As a consequence, frequency curves for flapwise and
chordwise bending may cross, and this is indeed what happens for both

72 = 0.01 and 72 = 0.1, two such intersections occurring in the latter
case. However, when twist is introduced, the intersections no longer
occur. This must be attributed to a strong influence of twist in
coupling the flapwise and chordwise motions, and it must be concluded
that, because of this coupling, the character of the individual modes
changes substantially and continuously as the rotational velocity is
increased from zero to large values,

Presentation of the frequency data in the manner of figure 8, while
valuable in demonstrating the effects Just discussed, does not lend
itself well to a generalization of the data in a useful form. For this
purpose it is preferable to express the natural frequencies of the
rotating blade in the form of a ratio to the corresponding frequencies
of the nonrotating blade, and the rotational velocity in the form of a
ratio to the fundamental frequency of the nonrotating blade. This is
done in figures 9 to 13. These figures demonstrate the effect of tip
blade angle Pgp for given values of total twist. In most cases data
are presented for both zero and 5 percent offset and for both cantilever-
and articulated-type root support. It is seen that, while the effect
of blade angle is large in the case of the fundamental frequency ratio,
its effect decreases rapidly as the order of the frequency is increased
and for many of the higher frequencies is negligible. It appears also
that twist tends to reduce the blade-angle effect on the higher
frequencies.
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It should be noted that the discontinuity in slope of some of the
curves for zero twist (figs. 10(b) and 1i(a)) is attributable to the
fact that the curves are plotted for modes of given order and when a
discontinuity occurs, the mode of given order changes abruptly from a
chordwise to a flapwise mode, or vice versa, as seen in figure 8. Since
no abrupt change occurs in the character of a mode with increase in
rotational velocity when the blade is twisted (fig. 8) the curves for
the twisted blades are smooth. The same is apparently true when there
is zero twist but the blade angle is other than zero (fig. 11(a)) since
blade angle in the rotational case also has the effect of coupling
bending vibrations in the directions of the two principal axes of the
cross section. In the case of the higher modes this effect appears to
be small at moderate values of the blade angle (figs. 10(b) and 11(a)).

The effect of offset of the root support is seen to follow the
trend disclosed in reference 1 for untwisted blades; that is, the cen-
trifugal force has an increased stiffening effect and consequently
increases the frequency ratio. In view of the conclusion reached in
reference 11, that the frequencies depend almost linearly on the amount
of offset in the case of an untwisted beam at given rotational velocity,
it appears safe to extend this conclusion to twisted beams with moderate
offset, and to determine frequencies for amounts of offset other than
those specified here by linear interpolation or extrapolation from the
present data.

For the purpose of evaluating the effect of twist, the plots of
figures 1k to 20 are advantageous. Figure 14 shows that, for 72 = 0,
the fundamental frequency of the uniform cantilever beam is highly
dependent on twist when the blade angle at the tip is maintained con-
stant and only slightly dependent on twist when the blade angle at the
root is maintained constant. In this case the dependence is primarily
on root blade angle rather than twist. Furthermore, the reversal in
the trend of the curves with twist variation when the tip and root
angles are maintained constant indicates that there is an intermediate
station not far from the root, such that, if the blade angle is main-
tained constant at that station, the fundamental frequency will be inde-
pendent of twist. It can be anticipated that its location in the general
case will be dependent upon the mass and stiffness distribution of the
blade and that it will tend to move outward with increasing taper in
stiffness.

In the case of the higher modes, it is seen that twist has a neg-
ligible effect on frequency, irrespective of where the blade angle is
maintained constant. In view of this conclusion and the corresponding
small effect of blade angle discussed earlier, it appears that the fre-
quency ratios for these modes can be estimated satisfactorily by neg-
lecting blade angle and twist when the blade is very stiff in chordwise
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bending relative to flapwise bending (72 << 0.1). For this purpose the

data of reference 1 could be used. It would, of course, be necessary to -
determine the natural frequencies of the nonrotating twisted blade in

order to convert frequency ratios into actual frequencies. For this

purpose, methods such as those of the appendix or reference 12 could be

used.

Figure 15 indicates that, when 72 = 0.01, conclusions similar to
those discussed above with regard to the fundamental frequency of the

uniform cantilever blade when 72 = 0 apply again. In the case of
those higher frequencies which evidence substantial coupling effects,
there is now a moderate influence of twist on the frequency ratio.

N H =

When 72 1is increased further to the value 0.1, there is sub-
stantial coupling between the fundamental flapwise and chordwise modes,
but it is still seen (fig. 16) that the frequency ratios for these modes
are primarily functions of root angle and are only slightly dependent
on twist. In the case of the higher modes, coupling is again seen %o
effect a moderate dependence of frequency ratio on twist.

Results for the cantilever tapered blade for 72 = 0, including the
offset root condition, are given in figure 17. These curves represent -«
all the data available for the tapered cantilever blade and exhibit no
important qualitative differences when compared with the uniform canti-
lever blade. -

In the case of the uniform articulated blade (figs. 18 and 19), the
relative absence of coupling effects for the parametric values and modes
considered produces results similar to those discussed above in connec-
tion with the cantilever blade with 72 = 0. The fundamental frequency
ratio is again independent of twist if the blade angle is maintained
constant at an intermediate station, which in this case can be expected
to be considerably farther out along the blade. The frequency ratio
for the second mode is seen to be virtually independent of both twist

and blade angle. In the case of the tapered articulated blade for y2 = 0
(fig. 20), no effect of twist on the frequency ratios for the first and
second modes is discernible when the blade angle at the tip is held
constant.

Evaluation of Rayleigh-Southwell Approximation

The Rayleigh-Southwell approximation was applied to the lumped mass

system for most of the zero offset cases and the results are shown in °
figures 9 to 13. It is seen from figure 9 that, with ¢ = O, the error
introduced by the approximation into the fundamental frequency of the -

uniform cantilever blade increases slightly with twist and with blade
angle in the range considered. These parameters are seen to have little
effect on the accuracy of the approximation in the case of the higher
frequencies.
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Figures 10 and 11 indicate that, as 7y 1is increased, conclusions

similar to those reached above for 72 = 0 still apply in the case of
frequencies which are not substantially influenced by coupling between
bending about the two principal axes of the cross section. On the other
hand, where such coupling is large, the curves of frequency ratio depart
radically from a straight-line variation and the Rayleigh-Southwell
approximation loses its value except at low values of the rotational
velocity. This could easily be anticipated since the mode shapes, in
such cases, can be expected to change radically with increase in the
rotational velocity.

In the case of the articulated blade (figs. 12 and 13), no strong
coupling effects, as discussed above, were encountered for the parametric
values considered. Consequently, the Rayleigh-Southwell approach based
on the lumped mass system was found to yield a valid approximation in
these cases. In fact, the approximations for the first mode for the
zero offset articulated blade coincided with the calculated results and
could not be shown as separate curves.

A check of a few cases indicates that similar accuracy can be
expected for offset root conditions for both the cantilever and articu-
lated blade.

Evaluation of Lo and Renbarger Relation
in Application to Twisted Blades

The applicability of equation (6) in the determination of the funda-
mental frequency of a rotating, uniform, twisted, cantilever blade, using
the blade angle at the root, is illustrated in figure 21. It is seen
that the accuracy of this relation deteriorates somewhat with increase
in twist but it still represents a valid approximation for estimation
purposes. It is seen also that the slope of the actual curves is very
close to that of the approximation. Results are not presented for

72 = 0.1 since the large coupling effects present in that case would
be expected to make equation (6) inapplicable.

CONCLUSIONS

On the basis of the data presented, a number of conclusions can be
reached concerning the natural frequencies of twisted nonrotating and
rotating blades. These are:

1. The fundamental frequency of cantilever and articulated nonro-
tating blades is effectively independent of twist if the bending
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stiffness about the minor principal axis of the cross section is at
least three times as large as the bending stiffness about the major
principal axis.

2. The second and third natural frequencies of nonrotating canti-
lever blades and the second natural frequency of nonrotating articulated
blades decrease with increase in twist if the stiffness about the minor
principal axis of the cross section is very large in relation to the
stiffness about the major principal axis.

3. When two frequencies of a nonrotating untwisted blade are close
in value, the introduction of twist tends to increase the separation of
the two frequency values.

W+

L4, The effect of twist on the lower natural frequencies of nonro-
tating blades decreases with increase in taper of both mass and stiffness.

5. The fundamental frequency of a rotating twisted cantilever blade
depends primarily on root-blade angle and only secondarily on twist. It
is independent of twist when the blade angle is maintalned constant at
an appropriately selected intermediate station close to the root. The
lbcation of this station can be expected to depend upon the spanwise dis- N
tribution of mass and stiffness. A similar station exists in the case
of the fundamental frequency of a rotating twisted articulated blade,
but it is located considerably further outboard. -

6. When curves of natural frequency versus rotational velocity for
an untwisted blade set at zero blade angle cross, the introduction of
twist or blade angle tends to couple the corresponding modes and yields
frequency curves which do not cross.

7. When coupling effects, as discussed in item 6, are not appreci-
able, the effect of twist and blade angle on the ratio of rotating to
nonrotating frequencies of the higher modes is small or negligible,
Even when such coupling effects are large, the frequency ratio is not
highly sensitive to blade angle or twist.

8. Offset of the root support increases the frequency ratio.

9. Rayleigh-Southwell approximation yields results, in the case of
twisted rotating blades, which are similar to those of the untwisted
blade at zero blade angle for the higher modes when coupling effects of
the sort discussed in item 6 are not in evidence. When such coupling
effects are in evidence, the approach yields very poor results except
at small values of rotational velocity. The fundamental frequency of
a cantilever blade is less well represented by the Rayleigh-Southwell
approximation when twist and blade angle are introduced. On the other
hand, the accuracy of the approximation in determining the fundamental




\J'\N = £

[
\n

frequency of an articulated blade is relatively insensitive to twist
and blade angle.

10. The relation of Lo and Renbarger for the effect of blade angle
on natural frequency of rotating blades is found to be useful in deter-
mining the fundamental frequency of twisted cantilever blades when the
blade angle is measured at the root of the blade and the fundamental
mode is not substantially coupled with other modes.

University of Michigan,
Ann Arbor, Mich., April 17, 1959.
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APPENDIX
METHOD OF ANALYSIS

The present method of analysis is a modification of a method devel-
oped by Targoff (ref. 8) which in turn is an extension and adaptation
of the familiar Holzer-Myklestad method (ref. 9) to the case of bending
of a twisted rotating beam.

The beam is divided spanwise into a number of segments, not neces-
sarily equal in length. The mass of each segment is assumed concentrated
at its center, and the bending stiffnesses EI; and EI, and angle of

incidence B are assumed constant between masses, appropriate average
values being selected. The twist of the beam is accounted for by rela-
tive rotations of adjacent uniform bays (between masses) about a span-
wise axis, the change in angle A3 Dbeing equal to the total twist in a
segment and occurring Jjust outboard of the mass (fig. 22).

The quantities Vi, Mj, &', 8;, Vo, M,, 35", and 3, (fig. 2),
which apply when the beam is at its maximum displacement in a free vibra-

tion, are defined at stations along the beam and may be represented at
any station in the form of a column matrix,

,Vl
My

t

51

B,

22

The elements of this matrix will vary along the beam in such a
manner that the variation can be considered to occur in a series of
steps. Moving from the tip toward the root of the beam, the change in

{§} occurring from a station immediately outboard of one mass to a sta-
tion immediately outboard of the next mass can be broken down into three

\NT\W -~ =
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steps, the first involving movement across the mass, the second involving
movement from one end to the other of the weightless uniform bay, and
the third involving movement across the discontinuity in B.

The relationship between the {A} matrices as they apply at the two
extremes of this travel can be represented as follows:

By - FE E ()

where [F], [E], and [ﬁ] are rectangular matrices representing linear
relationships corresponding to the three steps discussed previously.

*

The [F] matrix, relating the {é} matrices on either side of a con-
centrated mass, is written as follows:

1 0 0 m(eP+02in2%8) 0 0 O -m02sin B cos B

o 1 o ~mPx 0 0 © 0

o 0 1 0 O 0 o© 0
7 lo o o 1 o 0 o 0 o
1=l0 0 0 -mPsinpcosp 1 0 0 mle?+ 62cos2p) \A2)

o0 0 o0 0 0O 1 o© -mQ2x

0 0 o 0 o 0 1 0

0 0 o 0 O 0 O 1

o8

It is seen that only the shear forces bending moments are changed
since there are no discontinuities in slope or disp The changes
in shear force are due partly to the inertia force associated with the
vibrational motion of the mass and partly to the component of centrifugal
force normal to the undeformed position of the elastic axis. The change
in bending moment is fictitious and arises from a special feature of the
analysis, This feature involves the replacement of the component of the
centrifugal force parallel to the undeformed position of the elastic

axls vy an equal torce along the line of the undetformed axis and an
appropriate couple to provide static equivalence. The changes in bending

moment indicated in the [f] matrix are then due only to the applied

couple, the moment due to the force applied along the undeformed axis
being accounted for in the Eﬂ] matrix. When moments due to both sources

£
21

H
'.._I
[
o
@
&
5

are considered, the discontinuity in bending moment disappears., It
should be noted that, on the basis of this procedure, the bending moment
at any station is not M, but rather M plus the moment of the tensile
force T acting along the undeformed elastic axis.
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The elements in the [E] matrix are found by solution of the dif-

ferential equation for bending in the weightless uniform bay between
masses. For bending about the major principal axis of the cross sec-
tion, this equation is written

8."EI; = Vs + (M + T8)) (43)

where V1 and M) apply at the outboard end of the bay and s 1s a
spanwise coordinate measured inward from the outer end of the bay.

W
The solution of equation (A3) is ;
. 5
. s1nh(pls)
81(s) = 61(0)cosh(pls) + 81 '(0) —5
My Vi1 s
+ ?F1}osh(pls) - i] + ﬁrE?I s1nh(pls) - %] (AL)

where
\
T
Py =\
1‘}1

Substituting s = 1 into this solution and its first derivative
and into a similar solution for bending about the minor principal axis

of the cross section, the elements of the [E] matrix are obtained.
This matrix is presented as follows:

._1 -0 0] 0] 0 0 0] 0
1 1 0 0 0] 0] 0 0
EBl E52 E§3 EB“ 0 0] 0 0
[¥] Ey;  Eyp By Eyy Y Y Y 0 (a5)
0 0] 0 0 1 0 0 0
0 0 0 0 1 1 0 0]
0 0 0 0 E85 Egg E87 Egg




where

W~ X
(53]
=
'—l

It should be noted that

it

-Eue = - %E‘:OSh(pll) - l]
- % sinh(p; 1)

Eyy = cosh(pl Z)

-p1 sinh(pll)
%E}l_ sinh(p 1) - z]

- pi sinh(p; 1)

1
-E86 = - %[:COSh(pEZ) - ]_]
D
- FQ sinh(ppl)

Egg = cosh(pgl)
-Po sinh(pgl)
%E’% sinh(p,l) - z}

- % sinh(p,1)

81" and bp' are positive for increasing

deflection in the positive direction of x.
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The [R] matrix serves merely to rotate the coordinate axes through
the angle A3, and is written as follows:



20

cos 28 0 0 0 -sinsg O 0 o |
0 cos M8 0] 0 0] -sin /M8 0 0
0] 0] cos M8 0 0 0] -sin M8 0
0 0 0 cos M3 0] 0] 0] -sin A8
B{] ) sin A8 0 0 0 cos M8 0 0 0
0 sin A8 0 0 o) cos M 0 0
0] 0 sin A8 0 0 (0] cos OB (0]
B 0] 0 0] sin /A8 0 0 0 cos AQJ

By a successive multiplication of the appropriate matrices, a
linear relationship can be established between the {é} matrices at the

{A}root = [C] {A}tip

Recognizing that the shears and bending moments are zero at the tip
of the beam, the {A}tip matrix can be reduced to a four-element matrix

root and tip of the beam:

(6)

and the corresponding four columns of the [C] matrix eliminated. In
fact, these four columns can be eliminated from the first ﬁﬂ matrix at

the tip of the beam, and successive multiplications will then yield an
8 x 4 matrix product.

Satisfaction of the boundary conditions at the root of the beam
then requires that the determinant of a 4 x 4 matrix, formed from appro-

priate elements of the Eﬂ matrix, be equal to zero. The elements of
this determinant will be polynomials in w?, and upon expansion a poly-

nomial equation in of will be obtained. In principle, the natural
frequencies of the beam could be determined by solving for the roots of
this equation; however, such a procedure is far too cumbersome to be
feasible.

A more practical procedure involves the introduction of trial values

of w 1into the various ﬁﬂ matrices and evaluating the elements of all
the matrices numerically. The matrix multiplications can then be carried
out numerically and the appropriate determinant evaluated. The value of
this determinant, which may be termed the "residual,” may then be plotted

T W H =



U W =

versus o or w2 and the location of zeros of the residual will deter-
mine the natural frequencies of the beam.

For the purposes of a parametric survey, it is desirable to treat
the problem in nondimensional form. Toward this end, the {A} matrix
can be redefined in terms of nondimensional forces and moments as follows:

’VlR2/EIlOW
MlR/EIlO
61 !
51/R
{A} - 4V2R;;E110 L (AY)
MQR/EIJ_O

t

oo

Bo/R
ST

The corresponding nondimensional forms for the @ﬂ and @ﬂ matrices
are as follows, the [ﬁ] matrix remaining unchanged:
[~ - - N
1 O 0 Zp(%2 + pzsineﬁ) 0 O 0O -1lpu©sin B cos B

0] 1 0 - 1pxW 0O O o 0]
o 0 1 0 0 0 O 0
0O 0 © 1 0O 0 O 0
I} - 0O 0 0 -Tpu2sinpcosp 1 0 0 (A2 + p2cosp) (28
0O 0 O© 0 0O 1 o0 -1pxp
0O 0 O ) 0 0 1 0

0O o0 O 0 0O 0 O 1
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1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 o)
[E] ) E’-&l EL\Z -F—‘)-I»B E)_m 0 0 0 0 (A9)
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
| 0 0 0 0 Egs E% Eg; @@

where

31
By e - L sinh<uz _i)
E35 = ELIJ-I- = COSh<H-i _—i—>
vEIl
Es), = b sinh(ui]L
Sk EI; < VE11>
T

- BT - -
By = = |&)==L sinh (7 -1
quE* T Iy

=
i
L
&=l
=
o
|
]
4
-
( (@] 1
(@]
0
=g
T
/;T\
o
=i
[
~—
}
.

i

5 __ LEL LT
EJ+5 = ~ m ? Slnh<|ull ﬁ)
/ —
17375 = -BEgg = - L cosh/'yui T >- l]
M \ Iz
Eq¢ = - VA sinh(yui _i>
u|T EI, N -

W+ =




OUTW + =

]
\N

7 1 |1 (B2 7| T 3
E85 = —=——l=\— sinh 7’“1 —_1 - A
perH7 Y T < Ig)
- EI - =
Egy = - L1222 sinn(yul L
A I El,

For the case of zero rotational velocity, the [f] matrix is obtained
directly by substitution of 4 = O. When this substitution is made in
the [E] matrix, some of the elements are found to be of indeterminate

form and a limiting process must be applied. This results in:

~- - -
1 0 0 0 0 0 0 )
1 1 0 0 0 0 0 0
—2 -
I ! 0 0 0 0 0
I, BI;
- -2 -
EAZ— <= -3 1 0 0 0 0
ET, oEI
[E] = 1 1 (A10)
0 0 0 0 1 0 0 0
0 0 0 0 1 1 0 0
052 23
0 0 0 o .rito_rt 1 0
BT, El,
233 oD i}
0 0 0 i it 3 1
| 6ET, Ir
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It has been found that a direct application of the method as indi-
cated leads to computational difficulties under some circumstances.
Roundoff errors in the succession of matrix multiplications and small
differences between large numbers in the determinant expansion may
result in considerable random error in the values of the residual,
making it difficult to obtain an accurate estimate of the natural fre-
quencies., Such errors are negligible when the rotational velocity is
small and when only the lower natural frequencies are desired. The
errors increase with increase in the rotational velocity and the order
of the desired natural frequencies and may become very troublesome.

This difficulty can always be overcome by a sufficient increase in
the number of significant figures carried in the computations, such as
by the use of double-precision programming in machine computation, but
only at the price of increased programming complexity, increased storage
requirements, and greatly increased computing time. An alternative
scheme for circumventing it has been devised by Targoff (verbal communi-
cation) which involves a refinement of the basic method for values of
frequency in the neighborhood of an expected solution. The basic method
is applied at such a value and three of the four unknown tip quantities
(deflections and slopes) are related linearly to the fourth by solution
of three of the four homogeneous equations obtained from equation (A6)
for satisfaction of the root boundary conditions. This corresponds to
an approximate mode shape. The correction to this approximation to
yield the exact mode shape may then be represented as follows:

4 N
81" - 81,51
51
ﬁ 7

1 ]
55" - 52a 5y
L 52 - 62382

where Sla', 82a', and 82& correspond to the approximate mode nor-

malized for ®; = 1. Thus, the following relation may be written:

W - =
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VW =

25
[0 0 0 0]
0 0 0 0
4 3
0 1 0 0] 5
{A}tip = { . ? (A11)
T
0 0 0 0 &' - 82a 51
0 0 0 0 85 - 85 By
N J
0 52a' 1 0]
0 ) 1
- 26. 0 .

If this relation is substituted into equation (A6) and the succes-
sive matrix multiplications are repeated, starting with the new
8 x 4 matrix introduced by this substitution, it is found that the resid-
uvals determined in this manner show greatly reduced scatter and permit
a more accurate determination of the natural frequencies. It should be
noted that the present modification does not change the values of the
frequency at which the zeros of the residual occur, since 1t involves
the addition to one column of the determinant of a linear combination
of other columns, thus not changing the exact value of the determinant
but merely scaling down one of its columns.
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(a) Displacements. (v) Moments.
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(c) Shears.

Figure 2.- Nomenclature and sign convention for displacements, bending
moments, and shears (view of cross section looking toward axis of

rotation).
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(a) Uniform blade.

(b) Tapered blade.

Figure 5.- Effect of twist on natural frequencies of nonrotating

cantilever blade; €

o.
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(a) Uniform blade. (b) Tapered blade.

Figure 6.- Effect of twist on natural frequencies of nonrotating
articulated blade; € = O.
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(a) Cantilever blade; 72 = 0.0l.

Figure 7.- Representative mode shapes of nonrotating uniform blades;
e =0, 6=30°, pp=0°,



34

Ist MODE

2nd MODE

(b) Articulated blade; 72 = 0.1.
s,

Figure T7.- Continued.
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Fighre T.- Concluded.

35



36

153 2 ey}

‘50 = g ‘o = 9 fopBTQ JISASTIHUBD WIOFTUN JUTPBIOL JO gatousnbaay TeINgBN -°Q SINITA

"T0°0 = g4 (9) 0= g4 (3)

0002

000

000'9

000's

— —{ 00001




37

‘1°0 = a4

GET-M

000'2

000't

—000'I

*pepNTOUO) -'Q dINITH

00l

002

00¢

oov



38

Yy LT

‘0 = ma {5pBTQ JISA3TTRUBD UWLIOJTUN 3UT}BIOIX JIO0F SOTFBI Kouenboag -6 2an3Td

02 Ol

* 60

0

=0 (®)

=y

02 Ol

| |
wO5-0 g ‘pows pig

\/’ 05 =
o0=4g ‘apow puz

o0f' =
0G/=
0= 1gy ‘pow is/

G00-¢

ﬂ [
00E-0 =17 ‘opow pig

0% =
20=Lgy ‘opow puz

005 =
oG/ =
0=y ‘apow 4s|

U0 1DWIX04ddy [13MY4NOS - Yb513) DY e e —

o]

02




N *panutauU0) -6 sanITg

oST =9 (Q)

)

02 0l

0

02 Ol

| |
00E-0=4g/ opow pig -

05-0="g “apow puz

o0f =
onﬂ\h

00=4 ‘apous 15/

500-2

GeT-M

I T
//lmvgm 0= pow psg

.\\\A ~ 00%=

—, uk%\ ‘gpow puz

0= ‘apow ;s

/
\\ 0=9

UOIJDUWIXOITAY []MYLNOS - DI ADL e e e

0¢d



Lo

0¢

GeT-M

ol

*pspurouo) -6

Ehagboady

"0¢ =6 (2)

(Y

0

02 Ol

206048 ‘apows pug

208-0-4g ‘apow puz

0% =
oG/=

00 =18 ‘Ipow s/

500=2

_
[e0E0 =gy ‘apow pig

oG/ =
oQ.L%\ ‘apow s/

YOI DUWIX04d S 113MYIN0S-YbIdIADY — = ——

02




()
= *10°0 = NA foPBTQ JISASTTIAUBD TLIOITUN SuTqwlod JI0T SoT9BI Lousnbaag -+QT 9JIndTJg

*9pom 1SITJ moo =g (®)
|
(=)
2\

02 Ol 0 02 Ol
I | |

oh.\n

o0 =Lgy ‘apows 4s/ 00=Lgy ‘apows s/

]
g

500-2 \ 0
/

/
UOIOWIX040AN [/3MYINOSG —YD13]AD Y e e cnme

[, CCT=M



4o

-t e - &

*penuTquUO) -'QT SINITJ

*S9POW YIJINOJ PUB ‘PITYF ‘Puooss {0 = @

In
NA Aumv
0] 02

(a)

Ol 0

0 05-0=4g ‘apow pig

L5-0=4g ‘apow Yyt

0= 1g ‘opow pug

500-2

c0£-0=4g ‘pow yit

UoIDWIX04dAY 11aMYLN0S - D13]ADY e e e

00£-0=4g ‘spow p1£

00=4 ‘apow puz

09




NN
=r

0¢

*PONUTAUO) ~-*QT 9NBT g

*spowm 1SITJ mom.m =9 (°)

_24A
NA ' v
Ol 0] 03 Ol
| | i I

00f= ] \ 205 =

0“\” \ oh\hk

anx%:thE\m\ 00="7 ‘apow s/

7 /
sG00-9 \\ 0-39

UOIDUIX04GdY [1aMYiN0S -YDId|ADY ——=— —

CeT-M

ol



LL

02

-t d = 44

*panuTIuUO) -°QT 9MITJ

*SOPOW YIJINOJ PUB ‘PITYF ‘puodss {CT =9 (P)

205 -0=1 ‘apow pig

20£-0=4 ‘apow 4

o0f =
00 =48 ‘apow puz

500-2

00% =
20 =L ‘apow pig

QQM.u
00=~g ‘opow puz

0-=29

UOIJDWIXOLEAYT [13MYINOS ~ YD13]ADY e comm e

00l ‘spow i |




In\
-3

*panuUTlu0) -°*QT SaI1g

"opow 3SIIF f,0¢ = 8 (@)

02 ol

(=)

0 0¢d Ol

f |

N

0 0f = . 0G/+
0G/= 20=457 ‘apow 45/
00=45y ‘apow 45y /
/
600-3 \\ 0=
/

GCT-M

UOH DWIXOIDD [1OMYLNOS - Y13 AD ) = e e

0¢




G L-M

*papnTouc) -°QT 9MITJ

*SopOW Y3JINOJF PUB ‘pIIY} ‘PuUOOSS ‘00¢ =06 (J)

i

Ol 0

ul

=

02 Ot

L6

LO5-0=4g ‘apows pig

LO£-0=10 ‘apous ity

0=/ ‘opow puz

G00=2

I I

QQMJH
0L ‘pow pig

‘pow Yt g2

QQHK
7 4

00=Lg ‘apow puz

0-=2
oI oWIx04ddly 1/OMYLNOS - YOI FADY e




k7

'0=2 ‘T°0 = z4 fopelq

T

02 - 0l

I |

00f 50=Lg ‘apous yi
0% -

vonDwWIX01ddyy [1omyinos—ybidfpy — — —

GCT-M

0 ‘apow 445

oQ.k% ‘apow pig

g

208 =

0G/=
0= 4 yod ‘gpow 4s/

JISASTTQUBD WIOJTUN JUTIBIOI J0J S0198I Lousnbaxg -°TT oan3Tg

0



48

DMHIS N .

panuTquo) -°TT 23T

6T =8 (%)

02 ol 0
7 _
20-0=1g ‘apow Y4 |
—2
—e
QQMJH EZA
,0=1g ‘apow pig M.mﬂv
—t
g

uarjowix04dadly [/emyynos - yb613]ADY, — = —

—Gl




(o)}
-

*papnTouc) -°11 aIndtg

00 =6 (2)

005 ~0=1g) ‘spow y1 4 4

—S

o DWIx04dd 7 [13MYiN0SG - Yb13JADY ——— e———

CeT-M

0=4g ‘apow 4s/

Sl

02



50

JZ L 1y

‘0 = NA fopeTq PoBINOTLIE WIOFTUN JuT3BIOI JOF SOT38I Aousnbaxqg -°2T 2aInBT A

"0 =86 (®)

(=)

0 o'l g

05 -0=& ‘pow puz

0 0f = .
00=& ‘apou 4s/

G009

I !

0 0% =

.
20=1y ‘spow puz

N
201 ‘apow 4s/

— VOHDWIX04AaY 11aMYiNOs - Yb13JADY = — —

Ol




51

*penuUTqUO) -°gT INITA

*oST =86 (q)

(

N
)

Ol g

S 05-0= gy ‘apow puz

005 =

GCT-M

20=L5 ‘apow ys/

s00-2

! T
— o0& =
»0= 1o ‘spow puz

uQm;u
L,0=1gy ‘spow 4s/

0=2

uorjounxo1ddty [1amyinog - yb1d)ADY mm — —




52

ol

2L L 11

*papnTouo) -°*21 SIndig

"00¢ =8 (2)

g 0

A

2

e

ul
ol g

00£-0=48 ‘spow puz

0% =
s0=45" apow 45/

G00-=2

I I

0% =
» 0= apow puz

00F =
—,0=L ‘apow s/

0-2

UOIOW IX04ddYy (1OMYLNOS - YD1 ADY —— e ——




L4
1N

*10°0 = ma £9pBTQ Pa3BTNOTLIE WIOITUN FUIIBLOI JOJ SOT4BI Adouanbaxg -°¢T aIndTd

ol g

"0

=6 (®)

=)

o'l G

O£ -0/ 9pow puz

QQMJH
0= 9pows s/

G00-2

) ' GCT-M

! [

= 0c-

— 0= k%\ ‘gpous puz

\ o 0f =
0= ‘apow s/

0=2

UOIIDUIX0IAAY | 1OMYINOS - YD1 ADY e oo e L

Ol



5k

ol

GeT-M

*pPeNUTIUO) -°¢T SaNnITJ

.Om.ﬂ =0 APV

_zaA

7)

00f - 04y ‘apows puz

o0f =
00=1g ‘apow 4s/

§00-2

N NQQM, =
oQ.L%\ ‘gpow puz

005 <
00=1gy ‘apow 4sy

0=9

U0IJOWIX04daY 119MYINOS ~ Y513/ ADY e e e




o'l

spopnToI0) -°¢1 2anITd

00z =8 (2)

0 O£ -0=1g) ‘apow puz

0% =
00=4g7 spow 45/

G0 0=2

GCT-M

QQM: =
0015 ‘opow puz

QQM.....
nmn% ‘spow 4s/

0:=2

uoloWIx01ddly [1omyIn0S -4b13jADY —— — —

ol



56

GeT-M

'0¢ = % (a)

03¢ o]

'0=2 ‘0=zt
{5PBTQ JISASTTA4UBD WIOJTUN JUTIBIOI IOJ SOT3BJI LousnbaaJ UO 3STM3 JO SdUSNTIUL -4 SINITJ

oGl = g (=)

0o 0¢ ol

_ T
20E-0= g ‘Pow pig

\ _
o0E-034 ‘POU pIE —5

00E-0=4 ‘pow puz

o Of =

oG/ =
004 ‘dpous 4sj

208 -0= g ‘pow puz

0 0% =

o G/ =
00=4) ‘dpow is/

Ol

0¢




p—
[IaY

*‘0=23 ‘T0°0 = g4
{oPBTQ JSASTIGUBD WIOJTUN JuT4B30X JOJ SOT4BI Adusnball UO 3STM3 JO 0USNTIUT =-°GT 2INIT4
00 =1 (®)
(= (%)
2\ = 2\ 1
07/ Ol 0 02 Ol 0
| l | :

CeT-M

204 ‘apow pvz

—¢

ol

QQMJH
0§/ = AI_E
00=4 ‘spow 4s) 2




58

*papnTouo)y -°*GT1 3IMITH

*00¢ = 0d  (Q)

0024 ‘Pow puz AlywAlv
2\

004 ‘dpow ¢S/

Ol

0¢




‘0=23 ‘T10=34

€9pBTQ JSASTTZUBD WIOJTUN 3UT3BROI I0F SO0T3BI Aousnbail U0 3STMY JO ddUSNTIUI -°QT SINJTJ

00 = I ()
(=) (=)
AN 2 ul
0e Ol o 02 ol o
| | | | _
QQM;h | )
000 POW 44§ - / 6=
! N
204 ‘spow puz —1S
005 =
204 ‘WO 4t @
— — 0!
N
| X
0 0F= € NACIKV
Qh,\h. ZK 008 =
0= 4 ‘gpow pig A Y v oG/= —
g l¢~ X 20= 4 ‘apous 4s/ Sl
_Jg —loz

CE1-M



60

—t e = &4

*pSpnIouo) --9T 2Jand1d

.OOm = OQ APV
A _ZAV A ' Ny v
2\ 1 2 z
0o¢ Ol 0 02 Ol 0]
f | [ I
0% \N
| 208 -0= g ‘spow puz
205 =
004 pow yit mk
\ 205 = —
00=8 ‘apow 4sy
—€
()
= N IK
‘opow pig .
b
p— m -

0¢




61

.Ou_Hd nonm_hm. .‘OH_H.@ aonmh
fapeTq J9A3TT3UBD passdel JuT3BIOX JOJ SOTIBI Kousnball uo 1STM] JO 20uanTjul -°*,T oanSfJg

(=
2
S 14 € 2 | 0] g 14 € 2 | 0
| _ _ _ | _ i | _ |
00f -00=4 ‘8pow pig 00E-00= g ‘9pow pig
]
P4
Of -o0=g) ‘8pow puz P
oOE 0% 4,08 0= ‘apous puz e
2\ ¥y
— pE— m:
o0f =
oG/ = — = —9
00 =g ‘9pous s/ 00 =g “epow s/
G00=2 /

mm.ﬂlz ] : ’ » ]



62

GeT-M

‘'0=23 ‘0=t
fapBT1q Pa3BINOTIIB WIOITUN BuT18310I JIOF SOT3BI fousnbaal uo 3STM3 JO ddusn{IuI -°Ql aanBTq

506 = 04 (Q) ‘oGl =19 (®)

20 -0=@ ‘pow pug L, 0f -0=8 ‘apow pug

QQM,n

0= 4 ‘apow i/ 00t =

00=4 ‘spous is/




2

‘0=28 ‘T0°0 = g4
f9PBTQq P9IBTNOTIIB WIOITUN BuT3el0d JIOF SOTgeI Ldousmbsxy wo ISTMY JO 2dUSNTIUI - 6T =2anI1g

"00¢ = 04 (q) ‘00 = 3¢ (8)

0 0E -0 9pow puz “0£-0=g pow puz

2 0f' =
00=g ‘opows Js/

mmﬂlz * ‘ ¥ ¢



64

GET-M

0 = Ig T4
{5peTq PateTnOTAIE patade) Bur3elol I0F SOTIBIL KousnbaxJ uo 38

‘o="Irg ‘o=1 ‘0=24

0OF -0 0= g ‘dpow puz

00E-00= g ‘BPOW 45/

G500-=2

00F -o0=4 ‘dpow puz

_

205 -00= g OPOW 45/

TM3 JO souanTJul -°0c aand1d




9J

W-135

300

250

200

150

100

50

|
30 45 60 75 90
Bo-DEGREES

I I I | I
o 15

(a) 72 =0.

Figure 21.- Effect of root blade angle on fundamental frequency of
uniform cantilever blade.
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Figure 21.- Concluded.
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Figure 22.- Blade representation.



